Better Than X-Rays

 

Low-energy terahertz radiation could potentially enable doctors to see deep into tissues without the damaging effects of X-rays, or allow security guards to identify chemicals in a package without opening it. However, engineers have had making powerful enough systems to accomplish these promising applications.

Now an electrical engineering research team at the University of Michigan has developed a laser-powered terahertz source and detector system that transmits with 50 times more power and receives with 30 times more sensitivity than existing technologies. This offers 1,500 times more powerful systems for imaging and sensing applications. The study is published in the journal Nature Communications.

A release from the university quotes lead investigator Mona Jarrahi as saying, "With our higher-sensitivity terahertz system, you could see deeper into tissues or sense small quantities of illegal drugs and explosives from a farther distance. That's why it's important."

Jarrahi's research team accomplished their goal by funneling the laser light to specifically selected locations near the device's electrode that feeds the antenna that transmits and receives the terahertz signal.

Their approach enables light to hitch a ride with free electrons on the surface of the metallic electrodes to form what are called "surface plasmon waves". By coupling the beam of light with surface plasmon waves, the researchers created a funnel to carry light into nanoscale regions near device electrodes much faster and much more efficiently,

"When you want to generate or detect terahertz radiation, you have to convert photons to electron hole pairs and then quickly drift them to the contact electrodes of the device. Any delay in this process will reduce the device efficiency," Jarrahi said. "We designed a structure so that when photons land, most of them appear to be right next to the contact electrodes." According to Jarrahi, the output power of the terahertz sources and the sensitivity of the terahertz detectors can be increased even further by designing optical funnels with tighter focusing capabilities.
1 2 Next
Print Article